
W H I T E PA P E R – A P R I L 2 0 1 9

Establishing a Software
Development Lifecycle for
Cloud Native Operations
Tools and practices for continuous delivery

By Hart Hoover, VMware Cloud Native Architect

W H I T E PA P E R | 2

Establishing a Software Development Lifecycle for Cloud Native Operations

Table of Contents

Introduction 3

Components 3

Source code management: Git 3

Container registry: Harbor 3

Continuous development: Skaffold 4

Continuous integration and delivery: Jenkins 4

Continuous deployment: Spinnaker 4

Software delivery pipelines 4

Development pipeline 4

Production pipeline 4

A note on cluster organization 4

Application development 5

Using Skaffold for development 5

Commit, push, and pull request 5

Application testing: Jenkins, Skaffold, and Harbor 5

A note on Harbor best practices 5

Application deployment 6

Deploying feature branches to staging environments 6

Deploying releases to production with Spinnaker 6

Kubernetes deployment patterns 6

Blue-green deployment 6

Canary deployment 7

Conclusion 8

Resources 8

W H I T E PA P E R | 3

Establishing a Software Development Lifecycle for Cloud Native Operations

Introduction
As enterprises look to release software at a higher velocity, they are turning to containers
as a standardization method to ensure consistency. To manage those containers across
clouds and on-premises infrastructure, companies are adopting Kubernetes as a common
API between these environments. Many of the organizations that are adopting Kubernetes
are doing so to leverage a cloud native approach to building and delivering software.

This paper describes the tools, practices, and patterns that some of our customers are
using to adopt a cloud native mindset. A curated cloud native application toolset, enabled
by open-source software, allows teams to gain more insight into their applications.

Once Kubernetes is up and running, developers need to be able to deploy application
software to clusters for testing and production workloads. Companies that can deploy
software more frequently with measurably lower failure rates are likely to be more
productive and have a larger market share. Although the industry has called this software
deployment lifecycle continuous delivery, there are several stages of continuous delivery:

Continuous development: How do developers get fast feedback on what they are making?
Do developers have to engage with other teams to get the resources they need to write
and test code for their applications? In a cloud native world, applications don’t live in a
monolith but are interdependent on other microservices. Teams that can develop
continuously against other APIs and services, while making small changes at a rapid rate
to push software forward, make a larger impact than those that do not.

Continuous integration: Once the developer has written code, can the change be tested
and integrated with the rest of the codebase in a continuous way, or do changes require
sign off or approval from multiple teams? Teams practicing continuous integration can fix
errors more quickly before pushing changes to production environments.

Continuous delivery and deployment: Is the code ready to deploy to production at any
time? Engineers practicing continuous delivery and deployment of their changes are more
productive and can see the value they add immediately in the application. The ability to
see this value also attracts more highly skilled engineers, which amplifies high functioning
cloud native teams even more.

Components
Here’s a curated set of tools that establishes a cloud native software delivery pipeline. This
combination of tools is proven to work effectively with VMware® Essential PKS, and these
tools can also work well with VMware® Enterprise PKS.

Source code management: Git
Git is a free and open-source distributed version control system that has become
extremely popular worldwide as the de facto standard for teams developing software. Git
is separated from alternatives by its branching model. Most teams that use Git either
consume repository hosting as a service through GitHub, GitLab, or others, or they host
repositories on premises using similar software. Git code repositories can be used for
application software, but in the last decade, application deployment tooling and even
infrastructure is driven by code under version control.

Container registry: Harbor
One of the hidden costs of a container orchestration solution like Kubernetes is the need
to access a myriad of container images as more applications are deployed into clusters.
Harbor can help control that cost by providing an open-source solution that stores images
in a private registry, signs them as trusted, and scans them for vulnerabilities. Harbor
solves the common challenges inherent in hosting container images by delivering trust,

W H I T E PA P E R | 4

Establishing a Software Development Lifecycle for Cloud Native Operations

compliance, performance, and interoperability. It fills a gap for organizations that cannot
use a public or cloud-based registry, or want a consistent experience across clouds.
Harbor was open sourced by VMware and is an official project of the Cloud Native
Computing Foundation.

Continuous development: Skaffold
Skaffold is an open-source command-line tool from Google that handles the workflow for
building, pushing, and deploying Kubernetes applications. Skaffold facilitates continuous
development for Kubernetes applications, allowing developers to iterate on application
source code locally and then deploy to local or remote Kubernetes clusters. Skaffold
allows for rapid feedback loops on a Kubernetes cluster, where developers can see how
their changes immediately impact not only their own applications but the relationships to
other applications that run in and outside Kubernetes. Finally, Skaffold also provides
building blocks and describes customizations for a CI/CD pipeline.

Continuous integration and delivery: Jenkins
Jenkins is a self-contained, open-source automation server. It can be used to automate all
sorts of tasks related to building, testing, and delivering or deploying software. Jenkins is
a highly extensible product whose functionality can be extended through the installation
of plugins.

Continuous deployment: Spinnaker
Spinnaker is an open-source, multi-cloud platform for releasing software. Created at
Netflix, it has been proven reliable in production by hundreds of teams over millions of
deployments. It combines a powerful and flexible pipeline management system with
integrations to the major cloud providers and Kubernetes. Spinnaker can handle multiple
deployment patterns natively.

Software delivery pipelines
Below are two examples of delivery pipelines from end to end, starting with a
development pipeline.

Development pipeline
The pipeline runs on each commit to a staging environment, where a developer can demo
the change or potentially run integration testing with other services managed by other
teams.

In this pipeline, development starts in a local environment, where it uses kind with
“skaffold dev” in a quick feedback loop. Git then pushes the code to staging. In staging,
Jenkins tests the code. After the Jenkins tests are complete, the Skaffold build command
pushes the code to Harbor and the Skaffold run command deploys the code to a staging
cluster.

Production pipeline
In the production pipeline, a release is cut and the new version is deployed to the
production cluster. The process flows like this: After the release is cut, the released
container is pushed to Harbor. Spinnaker polls Harbor for the new release image and asks
for approval to deploy it. The approval step allows the release manager to manually
approve changes before a deployment occurs. Spinnaker then deploys the new release to
a production Kubernetes cluster.

A note on cluster organization
The strategy of many early adopters of Kubernetes was to use one cluster for everything;
however, as Kubernetes has matured, several issues have been discovered with this

https://github.com/kubernetes-sigs/kind

W H I T E PA P E R | 5

Establishing a Software Development Lifecycle for Cloud Native Operations

strategy. True multi-tenancy is still not a solved problem in Kubernetes, and organizations
can have multiple teams or users competing for cluster resources. VMware recommends a
multi-cluster strategy, whether divided among teams, applications, stage of an application
(development vs. production), lines of business, or intersectional clusters depending on
corporate needs. For the purpose of this document, a single team uses a different cluster
for each stage of the application lifecycle.

Application development
Individual developers often develop a microservice locally without using a container or
Kubernetes environment. The microservice components are not put into containers until
the developer is ready to test in a container or commit the code and push the change to a
Git repository.

Using Skaffold for development
Skaffold can be used when a developer is ready to test an application in a containerized
environment. A skaffold.yaml file, which should reside in the same Git repository as the
application code, provides instructions on how the containers should be built and how the
application should be deployed. This process could follow Kubernetes manifests, Helm
charts, or kustomize templates. Kubernetes manifests should also live with the application
code, so the same team of developers can manage deployment code and application
code together—and most importantly, keep it all version controlled.

Skaffold can deploy to a Kubernetes cluster running locally, which allows the developer to
test code changes locally before pushing them through a build system to a remote cluster.
Popular local cluster options include Minikube, kind, or Docker Desktop. Skaffold should
tag images based on the Git commit ID so images can be pinned to version-controlled
changes.

Commit, push, and pull request
Once developers are ready to commit their changes and push to a remote Git repository,
they open a pull request to the master branch to merge their changes. A continuous
integration server should be watching for pull requests and test the code for quality.

Application testing: Jenkins, Skaffold, and Harbor
In this case, Jenkins is watching a repository for pull requests and testing appropriately.
The testing, which varies by language and application, may include syntax checking, unit
tests, and integration tests. As container images are being used, Container Structure Tests
should also be performed. In any case, the results of testing should be quickly available to
developers and efforts to minimize testing time to maximize developer productivity should
be encouraged.

Once Jenkins has tested the developer’s code changes for quality assurance, the following
steps occur in sequence:

1. A Harbor registry login occurs using docker login

2. A container image is built by Skaffold using the Jenkins host’s Docker daemon

3. The resulting image is tagged and pushed to Harbor to be deployed to Kubernetes.

A note on Harbor best practices
When using Harbor for container images as part of a pipeline, you should follow several
best practices. Please refer to the Harbor user and administrator guides for more
information.

https://helm.sh/
https://helm.sh/
https://github.com/kubernetes-sigs/kustomize
https://github.com/GoogleContainerTools/container-structure-test
https://github.com/vmware/harbor/blob/master/docs/user_guide.md
https://github.com/goharbor/harbor/blob/master/docs/installation_guide.md

W H I T E PA P E R | 6

Establishing a Software Development Lifecycle for Cloud Native Operations

• A project in Harbor should be created to host the team’s container images.

• Members of the team should have Guest access to the project that allows pull-access
only, regardless of whether that is driven by LDAP or Active Directory groups or
handled directly by Harbor’s internal authentication.

• The CI/CD system (in this case Jenkins) should have Developer access to the project.
This access level ensures that only automated systems and pipelines that are version
controlled have access to push container images to the repository, outside of Harbor
administrators.

• Kubernetes clusters should have Guest access, because the cluster only needs to pull
container images, never push.

• HTTPS should be enabled in Harbor with a certificate that is signed by an accepted
certificate authority. This configuration prevents Kubernetes cluster administrators
from having to set -insecure-registry in the Kubernetes Docker daemon configuration
and is more secure.

Application deployment
Deploying feature branches to staging environments
Once a container has been pushed as part of the same Jenkins pipeline, the pull request
can be deployed to a staging Kubernetes cluster for further testing or demonstration
purposes. Skaffold can be coupled with a Jenkins pipeline to deploy to the staging cluster.
Scripted inter-application integration tests can be performed to confirm the code change
is ready for release.

Deploying releases to production with Spinnaker
When the pull request has been completely tested and is deemed ready to merge and
deploy to production, a release is cut. A container image should be built with a version
tag. Spinnaker can poll an image registry to watch for this image and deploy it to a
production cluster by using a built-in Kubernetes deployment pattern.

Kubernetes deployment patterns
Kubernetes has several patterns built into the system that development teams can use for
deploying software. Two of the patterns are the blue-green pattern and the canary
pattern. These patterns require orchestration through a deployment pipeline (driven by
Jenkins) and the Harbor container registry to host container images. The Kubernetes
Deployment resource has RollingUpdate capability to ensure smooth deployments of
updated container images when teams release software.

Blue-green deployment
In a blue-green application deployment strategy in Kubernetes, two Kubernetes
ReplicaSets are used with different labels. A Kubernetes Service with a selector is used to
determine which pods get traffic, giving the administrator the ability to move back and
forth as needed.

https://github.com/goharbor/harbor/blob/master/docs/configure_https.md
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment

W H I T E PA P E R | 7

Establishing a Software Development Lifecycle for Cloud Native Operations

Canary deployment
In a canary deployment strategy, two ReplicaSets are used in a way that’s similar to a
blue-green deployment, but the service selector is the same instead of being different, as
Figure 2 shows.

By running a smaller ReplicaSet of the canary in the same Service pool, a percentage of
traffic can be sent to the canary for testing. Once initial testing passes, the canary
ReplicaSet can be scaled up to send a higher percentage of traffic to the canary. Once
testing is complete, the existing stable ReplicaSet’s pods can be replaced with the
updated image in sequence, and the canary deployment can be deleted, as Figure 3
shows.

Figure 1: A blue-green application deployment strategy in Kubernetes.

Figure 2: In a canary deployment strategy, two ReplicaSets with the same service selector are used.

W H I T E PA P E R | 8

Establishing a Software Development Lifecycle for Cloud Native Operations

Conclusion
By bringing together a curated set of cloud native tools, software development teams can
be successful with Kubernetes. By establishing quick feedback loops in development,
automating testing, and practicing continuous delivery, businesses can increase developer
velocity. The Kubernetes API is the common element that ensures consistency across local
development environments, on-premises staging environments, and public cloud
production environments.

Resources
• A Real World Example: The Jenkins X SSO Operator

• Harbor

• Skaffold

• Jenkins Pipeline Examples

• Spinnaker

Figure 3: The canary deployment is deleted after testing completes.

LEARN MORE ABOUT CLOUD NATIVE
TECHNOLOGY FROM VMWARE

To learn about how VMware can help
you deploy, manage, and secure cloud
native applications, see
https://cloud.vmware.com.

AUTHOR BIO

Hart Hoover is a Cloud Native Architect
at VMware who gets customers from
zero to production with Kubernetes
and other Cloud Native Computing
Foundation projects. Hart is a former
speaker at several OpenStack Summits,
Cloud Expo, DevOpsDays, Cisco Live,
Texas Linux Fest, and others. He is
also a co-organizer of the San Antonio
Kubernetes Meetup.

https://github.com/jenkins-x/sso-operator
https://goharbor.io/
https://skaffold.dev/
https://jenkins.io/doc/pipeline/examples/
https://www.spinnaker.io/
https://cloud.vmware.com/

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com Copyright © 2019 VMware, Inc.
All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. and its subsidiaries in the United States and other jurisdictions. All other
marks and names mentioned herein may be trademarks of their respective companies. Item No: vmw-cloud-native-software-development-lifecycle 4/19

	Introduction
	Components
	Source code management: Git
	Container registry: Harbor
	Continuous development: Skaffold
	Continuous integration and delivery: Jenkins
	Continuous deployment: Spinnaker

	Software delivery pipelines
	Development pipeline
	Production pipeline
	A note on cluster organization

	Application development
	Using Skaffold for development
	Commit, push, and pull request

	Application testing: Jenkins, Skaffold, and Harbor
	A note on Harbor best practices

	Application deployment
	Deploying feature branches to staging environments
	Deploying releases to production with Spinnaker

	Kubernetes deployment patterns
	Blue-green deployment
	Canary deployment

	Conclusion
	Resources

