

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

by Sanjeev Sharma and
Bernie Coyne

DevOps

2nd IBM Limited Edition

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Project Editor: Carrie A. Johnson

Acquisitions Editor: Katie Mohr

Editorial Manager: Rev Mengle

Business Development Representative:
Sue Blessing

Production Coordinator: Melissa Cossell

DevOps For Dummies®, 2nd IBM Limited Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com, Making
Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without
written permission. IBM and the IBM logo are registered trademarks of International Business
Machines Corporation. All other trademarks are the property of their respective owners. John Wiley
& Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETE-
NESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITU-
ATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT
ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PRO-
FESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN
THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRIT-
TEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For Dummies
book for your business or organization, please contact our Business Development Department in the
U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/custompub. For
information about licensing the For Dummies brand for products or services, contact
BrandedRights&Licenses@Wiley.com.

ISBN: 978-1-119-04705-6 (pbk); ISBN: 978-1-119-04729-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments
Some of the people who helped bring this book to market include the following:

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/custompub
mailto:info@dummies.biz
mailto:BrandedRights%26Licenses@Wiley.com

Table of Contents
Introduction . . 1

About This Book... 1
Icons Used in This Book... 2
Beyond the Book... 2

Chapter 1: What Is DevOps? . . 3
Understanding the Business Need for DevOps....................... 3
Recognizing the Business Value of DevOps............................ 4

Enhanced customer experience..................................... 5
Increased capacity to innovate....................................... 5
Faster time to value.. 6

Seeing How DevOps Works.. 6
Develop and test against production-like systems...... 6
Deploy with repeatable, reliable processes.................. 7
Monitor and validate operational quality...................... 8
Amplify feedback loops... 8

Chapter 2: Looking at DevOps Capabilities 9
Paths to DevOps Adoption.. 9
Steer.. 10
Develop/Test... 11

Collaborative development... 12
Continuous testing... 13

Deploy.. 13
Operate... 14

Continuous monitoring.. 14
Continuous customer feedback and optimization..... 14

Chapter 3: Adopting DevOps. . 15
Knowing Where to Begin.. 15

Identifying business objectives.................................... 16
Identifying bottlenecks in the delivery pipeline......... 16

People in DevOps.. 17
DevOps culture... 17
DevOps team... 19

Process in DevOps.. 19
DevOps as a business process...................................... 19
Change management process....................................... 20
DevOps techniques.. 21

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

iv
Technology in DevOps... 24

Infrastructure as code.. 25
Delivery pipeline... 26
Deployment automation and release management.... 28

Chapter 4: Looking at How Cloud Accelerates DevOps. . . . 31
Using Cloud as an Enabler for DevOps.................................. 32
Full-Stack Deployments.. 34
Choosing a Cloud Service Model for DevOps........................ 35

IaaS... 35
PaaS.. 37

Understanding What a Hybrid Cloud Is................................. 38

Chapter 5: Using DevOps to Solve New Challenges. . . 41
Mobile Applications.. 42
ALM Processes.. 43
Scaling Agile... 43
Multiple-Tier Applications... 44
DevOps in the Enterprise... 45
Supply Chains.. 46
The Internet of Things.. 46

Chapter 6: Making DevOps Work: IBM’s Story. 49
Taking a Look at the Executive’s Role.................................... 50
Putting Together the Team.. 51
Setting DevOps Goals... 51
Learning from the DevOps Transformation.......................... 52

Expanding agile practices.. 52
Leveraging test automation... 53
Building a delivery pipeline... 54
Experimenting rapidly.. 56
Continuously improving.. 57

Looking at the DevOps Results... 58

Chapter 7: Ten DevOps Myths. . 59
DevOps Is Only for “Born on the Web” Shops...................... 59
DevOps Is Operations Learning How to Code....................... 60
DevOps Is Just for Development and Operations................. 60
DevOps Isn’t for ITIL Shops... 60
DevOps Isn’t for Regulated Industries................................... 61
DevOps Isn’t for Outsourced Development........................... 61
No Cloud Means No DevOps... 61
DevOps Isn’t for Large, Complex Systems............................. 62
DevOps Is Only about Communication.................................. 62
DevOps Means Continuous Change Deployment................. 62

DevOps For Dummies, 2nd IBM Limited Edition

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

D
evOps (short for development and operations), like most
new approaches, is only a buzzword for many people.

Everyone talks about it, but not everyone knows what it is. In
broad terms, DevOps is an approach based on lean and agile
principles in which business owners and the development,
operations, and quality assurance departments collaborate to
deliver software in a continuous manner that enables the busi-
ness to more quickly seize market opportunities and reduce
the time to include customer feedback. Indeed, enterprise
applications are so diverse and composed of multiple tech-
nologies, databases, end-user devices, and so on, that only a
DevOps approach will be successful when dealing with these
complexities. Opinions differ on how to use it, however.

Some people say that DevOps is for practitioners only; others
say that it revolves around the cloud. IBM takes a broad and
holistic view and sees DevOps as a business-driven software
delivery approach — an approach that takes a new or enhanced
business capability from an idea all the way to production, pro-
viding business value to customers in an efficient manner and
capturing feedback as customers engage with the capability.
To do this, you need participation from stakeholders beyond
just the development and operations teams. A true DevOps
approach includes lines of business, practitioners, executives,
partners, suppliers, and so on.

About This Book
This book takes a business-centric approach to DevOps.
Today’s fast-moving world makes DevOps essential to all
enterprises that must be agile and lean enough to respond
rapidly to changes such as customer demands, market condi-
tions, competitive pressures, or regulatory requirements.

If you’re reading this book, we assume that you’ve heard
about DevOps but want to understand what it means and how
your company can gain business benefits from it. This book is

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 2
geared to executives, decision makers, and practitioners who
are new to the field of DevOps, who seek more information
about the approach, and who want to cut through the hype
surrounding the concept to get to the meat of it.

Icons Used in This Book
You’ll find several icons in the margins of this book. Here’s
what they mean.

	 The Tip icon points out helpful information on various
aspects of DevOps.

	 Anything that has a Remember icon is something that you
want to keep in mind.

	 The Warning icon alerts you to critical information.

	 Technical Stuff material goes beyond the basics of DevOps.
It isn’t essential reading, however.

Beyond the Book
You can find additional information about DevOps and IBM’s
approach and services available by visiting the following web
pages:

	 ✓	IBM DevOps Solution: ibm.com/devops

	 ✓	DevOps — the IBM approach (white paper): ibm.biz/
BdEnBz

	 ✓	The Software Edge (study): ibm.co/156KdoO

	 ✓	Adopting the IBM DevOps Approach (article): ibm.
biz/adoptingdevops

	 ✓	DevOps Services for Bluemix (service): bluemix.net

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://ibm.com/devops
http://ibm.biz/BdEnBz
http://ibm.biz/BdEnBz
http://ibm.co/156KdoO
http://ibm.biz/adoptingdevops
http://ibm.biz/adoptingdevops
https://bluemix.net

Chapter 1

What Is DevOps?
In This Chapter
▶	Seeing a business need for DevOps

▶	Finding business value in DevOps

▶	Understanding DevOps principles

M
aking any change in “business as usual” is always hard
and usually requires an investment. So whenever an

organization adopts any new technology, methodology, or
approach, that adoption has to be driven by a business need.
To develop a business case for adopting DevOps, you must
understand the business need for it, including the challenges
that it addresses. In this chapter, we give you the foundation
you need to start building your case.

Understanding the Business
Need for DevOps

Organizations want to create innovative applications or serv
ices to solve business problems. They may want to address
internal business problems (such as creating a better cus-
tomer relationship management system) or to help their cus-
tomers or end-users (such as by providing a new mobile app).

Many organizations aren’t successful with software projects,
however, and their failures are often related to challenges in
software development and delivery. Although most enter-
prises feel that software development and delivery are critical,
a recent IBM survey of the industry found that only 25 percent
believe that their teams are effective. This execution gap leads
to missed business opportunities.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 4
This problem is further amplified by a major shift in the types
of applications that businesses are required to deliver, from
systems of record to systems of engagement:

	 ✓	Systems of record: Traditional software applications are
large systems that function as systems of record, which
contain massive amounts of data and/or transactions and
are designed to be highly reliable and stable. Because
these applications don’t need to change often, organiza-
tions can satisfy their customers and their own business
needs by delivering only one or two large new releases
a year.

	 ✓	Systems of engagement: With the advent of mobile com-
munications and the maturation of web applications,
systems of record are being supplemented by systems
of engagement, which customers can access directly
and use to interact with the business. Such applications
must be easy to use, high performing, and capable of
rapid change to address customers’ changing needs and
evolving market forces.

Because systems of engagement are used directly by custom-
ers, they require intense focus on user experience, speed of
delivery, and agility — in other words, a DevOps approach.

	 Systems of engagement aren’t isolated islands and are often
tied to systems of record, so rapid changes to systems of
engagement result in changes to systems of record. Indeed
any kind of system that needs rapid delivery of innovation
requires DevOps. Such innovation is driven primarily by
emerging technology trends such as cloud computing, mobile
applications, Big Data, and social media, which may affect all
types of systems. We discuss these emerging technologies in
light of DevOps in Chapters 4 and 5.

Recognizing the Business
Value of DevOps

DevOps applies agile and lean principles across the entire
software supply chain. It enables a business to maximize the
speed of its delivery of a product or service, from initial idea
to production release to customer feedback to enhancements
based on that feedback.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What Is DevOps? 5
	 Because DevOps improves the way that a business delivers

value to its customers, suppliers, and partners, it’s an essen-
tial business process, not just an IT capability.

DevOps provides significant return on investment in three
areas:

	 ✓	Enhanced customer experience

	 ✓	Increased capacity to innovate

	 ✓	Faster time to value

We discuss all three areas in the following sections.

Enhanced customer experience
Delivering an enhanced (that is, differentiated and engaging)
customer experience builds customer loyalty and increases
market share. To deliver this experience, a business must
continuously obtain and respond to customer feedback,
which requires mechanisms to get fast feedback from all the
stakeholders in the software application that’s being deliv-
ered: customers, lines of business, users, suppliers, part-
ners, and so on.

In today’s world of systems of engagement (see “Understanding
the Business Need for DevOps,” earlier in this chapter), this
ability to react and adapt in an agile manner leads to enhanced
customer experience and loyalty.

Increased capacity to innovate
Modern organizations use lean thinking approaches to
increase their capacity to innovate. Their goals are to reduce
waste and rework and to shift resources to higher-value
activities.

	 An example of a common practice in lean thinking is A-B test-
ing, in which organizations ask a small group of users to test
and rate two or more sets of software that have different capa-
bilities. Then the better-capability set is rolled out to all users,
and the unsuccessful version is rolled back. Such A-B testing
is realistic only with efficient and automated mechanisms
such as those that DevOps facilitates.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 6

Faster time to value
Speeding time to value involves developing a culture, prac-
tices, and automation that allow for fast, efficient, and reli-
able software delivery through to production. DevOps, when
adopted as a business capability, provides the tools and cul-
ture required to facilitate efficient release planning, predict-
ability, and success.

The definition of value varies from organization to organiza-
tion and even from project to project, but the goal of DevOps
is to deliver this value faster and more efficiently.

Seeing How DevOps Works
The DevOps movement has produced several principles that
have evolved over time and are still evolving. Several solution
providers, including IBM, have developed their own variants.
All these principles, however, take a holistic approach to
DevOps, and organizations of all sizes can adopt them. These
principles are

	 ✓	Develop and test against production-like systems

	 ✓	Deploy with repeatable, reliable processes

	 ✓	Monitor and validate operational quality

	 ✓	Amplify feedback loops

We describe the principles in more detail in the following
sections.

Develop and test against
production-like systems
This principle stems from the DevOps concept shift left, in
which operations concerns move earlier in the software deliv-
ery life cycle, toward development (see Figure 1-1).

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 1: What Is DevOps? 7

Figure 1-1: �The shift-left concept moves operations earlier in the develop-
ment life cycle.

The goal is to allow development and quality assurance
(QA) teams to develop and test against systems that behave
like the production system, so that they can see how the
application behaves and performs well before it’s ready for
deployment.

	 The first exposure of the application to a production-like
system should be as early in the life cycle as possible to
address two major potential challenges. First, it allows the
application to be tested in an environment that’s close to the
actual production environment the application will be deliv-
ered to; and second, it allows for the application delivery pro-
cesses themselves to be tested and validated upfront.

From an operations perspective, too, this principle has tre-
mendous value. It enables the operations team to see early in
the cycle how their environment will behave when it supports
the application, thereby allowing them to create a fine-tuned,
application-aware environment.

Deploy with repeatable,
reliable processes
As the name suggests, this principle allows development and
operations to support an agile (or at least iterative) software
development process all the way through to production.
Automation is essential to create processes that are itera-
tive, frequent, repeatable, and reliable, so the organization
must create a delivery pipeline that allows for continuous,

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 8
automated deployment and testing. We talk more about
delivery pipelines in Chapter 3.

	 Frequent deployments also allow teams to test the deploy-
ment processes themselves, thereby lowering the risk of
deployment failures at release time.

Monitor and validate
operational quality
Organizations typically are good at monitoring applications
and systems in production because they have tools that
capture production systems’ metrics in real time. But they
monitor in a siloed and disconnected manner. This principle
moves monitoring earlier in the life cycle by requiring that
automated testing be done early and often in the life cycle to
monitor functional and non-functional characteristics of the
application. Whenever an application is deployed and tested,
quality metrics should be captured and analyzed. Frequent
monitoring provides early warning about operational and
quality issues that may occur in production.

	 These metrics should be captured in a format that all busi-
ness stakeholders can understand and use.

Amplify feedback loops
One goal of DevOps is to enable organizations to react and
make changes more rapidly. In software delivery, this goal
requires an organization to get quick feedback and then learn
rapidly from every action it takes. This principle calls for
organizations to create communication channels that allow all
stakeholders to access and act on feedback.

	 ✓	Development may act by adjusting its project plans or
priorities.

	 ✓	Production may act by enhancing the production
environments.

	 ✓	Business may act by modifying its release plans.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

Looking at DevOps
Capabilities

In This Chapter
▶	Understanding the reference architecture of DevOps

▶	Considering four paths to DevOps adoption

T
he capabilities that make up DevOps are a broad set that
span the software delivery life cycle. Where an organiza-

tion starts with DevOps depends on its business objectives
and goals — what challenges it’s trying to address and what
gaps in its software delivery capabilities need to be filled.

In this chapter, you look at a DevOps reference architec-
ture and the various ways that it enables a business to use
DevOps.

Paths to DevOps Adoption
A reference architecture provides a template of a proven solu-
tion by using a set of preferred methods and capabilities. The
DevOps reference architectures discussed in this chapter help
practitioners access and use the guidelines, directives, and
other material that they need to architect or design a DevOps
platform that accommodates people, processes, and technology
(see Chapter 3).

A reference architecture provides capabilities through its
various components. These capabilities in turn may be pro-
vided by a single component or a group of components work-
ing together. Therefore, you can view the DevOps reference

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 10
architecture, shown in Figure 2-1, from the perspective of the
core capabilities that it’s intended to provide. As the abstract
architecture evolves to concrete form, these capabilities are
provided by a set of effectively enabled people, defined prac-
tices, and automation tools.

Figure 2-1: �The DevOps reference architecture.

The DevOps reference architecture shown in Figure 2-1 pro-
poses the following four sets of adoption paths:

	 ✓	Steer

	 ✓	Develop/Test

	 ✓	Deploy

	 ✓	Operate

In the remaining sections of this chapter, you take a detailed
look at these adoption paths.

Steer
This adoption path consists of one practice that focuses on
establishing business goals and adjusting them based on cus-
tomer feedback: continuous business planning.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Looking at DevOps Capabilities 11
Businesses today need to be agile and able to react quickly
to customer feedback. Achieving this goal centers on an orga-
nization’s ability to do things right. Unfortunately, traditional
approaches to product delivery are too slow for today’s speed
of doing business, partially because these approaches depend
on custom development and manual processes and because
teams are operating in silos. Information required to plan and
re-plan quickly, while maximizing the ability to deliver value,
is fragmented and inconsistent. Often the right feedback isn’t
received early enough to achieve the right level of quality to
truly deliver value.

Teams also struggle to incorporate feedback that should
inform the prioritization of investments and then to collabo-
rate as an organization to drive execution in a continuous
delivery model. For some teams, planning is viewed as gover-
nance overhead that’s intrusive and slows them down instead
of an activity that enables them to deliver value with speed.

Faster delivery provides greater business agility, but you must
also manage speed with the trust and confidence that what
you’ve delivered is the right thing. You can’t deliver software
at speed if you don’t trust the accuracy of your business
goals, your measurements, and your platforms.

	 DevOps helps to reconcile these competing perspectives,
helping teams collaboratively establish business goals and
continuously change them based on customer feedback
thereby improving both agility and business outcomes. At
the same time, businesses need to manage costs. By identify-
ing and eliminating waste in the development process, the
team becomes more efficient but also addresses cost. This
approach helps teams strike an optimal balance between all
these considerations, across all phases of the DevOps life
cycle in moving to a continuous delivery model.

Develop/Test
This adoption path involves two practices: collaborative
development and continuous testing. As such, it forms the
core of development and quality assurance (QA) capabilities.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 12

Collaborative development
Software delivery efforts in an enterprise involve large num-
bers of cross-functional teams, including lines-of-business
owners, business analysts, enterprise and software architects,
developers, QA practitioners, operations personnel, security
specialists, suppliers, and partners. Practitioners from these
teams work on multiple platforms and may be spread across
multiple locations. Collaborative development enables these
practitioners to work together by providing a common set of
practices and a common platform they can use to create and
deliver software.

One core capability included within collaborative development
is continuous integration (see Figure 2-2), a practice in which
software developers continuously or frequently integrate their
work with that of other members of the development team.

Figure 2-2: �Collaboration via continuous integration.

Continuous integration was made popular by the agile move-
ment. The idea is for developers to regularly integrate their
work with that of the rest of the developers on their team
and then test the integrated work. In the case of complex
systems made up of multiple systems or services, developers
also regularly integrate their work with other systems and
services. Regular integration of results leads to early discov-
ery and exposure of integration risks. In complex systems, it
also exposes known and unknown risks — both technical and
schedule-related.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 2: Looking at DevOps Capabilities 13

Continuous testing
Continuous integration (see the preceding section) has sev-
eral goals:

	 ✓	Enable ongoing testing and verification of code

	 ✓	Validate that the code produced and integrated with that
of other developers and other components of the appli-
cation functions and performs as designed

	 ✓	Continuously test the application being developed

Continuous testing means testing earlier and continuously
across the life cycle, which results in reduced costs, short-
ened testing cycles, and achieved continuous feedback on
quality. This process is also known as shift-left testing, which
stresses integrating development and testing activities to
ensure quality is built-in as early in the life cycle as possible
and not something left to later. This is facilitated by adopting
capabilities like automated testing and service virtualization.
Service virtualization is the new capability for simulation of
production-like environments and makes continuous testing
feasible.

Deploy
The Deploy adoption path is where most of the root capabilities
of DevOps originated. Continuous release and deployment take
the concept of continuous integration to the next step. The prac-
tice that enables release and deploy also enables the creation
of a delivery pipeline (see Chapter 3). This pipeline facilitates
continuous deployment of software to QA and then to produc-
tion in an efficient, automated manner. The goal of continuous
release and deployment is to release new features to customers
and users as soon as possible.

	 Most of the tooling and processes that make up the core of
DevOps technology exist to facilitate continuous integration,
continuous release, and continuous deployment. I discuss
these topics in more detail in later chapters.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 14

Operate
The Operate adoption path includes two practices that allow
businesses to monitor how released applications are perform-
ing in production and to receive feedback from customers.
This data allows the businesses to react in an agile manner
and change their business plans as necessary.

Continuous monitoring
Continuous monitoring provides data and metrics to operations,
QA, development, lines-of-business personnel, and other stake-
holders about applications at different stages of the delivery
cycle.

	 These metrics aren’t limited to production. Such metrics allow
stakeholders to react by enhancing or changing the features
being delivered and/or the business plans required to deliver
them.

Continuous customer feedback
and optimization
The two most important types of information that a software
delivery team can get are data about how customers use the
application and feedback that those customers provide upon
using the application. New technologies allow businesses to
capture customer behavior and customer pain points right
as they use the application. This feedback allows different
stakeholders to take appropriate actions to improve the appli-
cations and enhance customer experience. Lines of business
may adjust their business plans, development may adjust
the capabilities it delivers, and operations may enhance the
environment in which the application is deployed. This con-
tinuous feedback loop is an essential component of DevOps,
allowing businesses to be more agile and responsive to cus-
tomer needs.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

Adopting DevOps
In This Chapter
▶	Making people more efficient

▶	Streamlining processes

▶	Choosing the right tools

A
dopting any new capability typically requires a plan that
spans people, process, and technology. You can’t succeed

in adopting new capabilities — especially in an enterprise that
has multiple, potentially distributed stakeholders — without
taking into consideration all three aspects of the capabilities
being adopted.

In this chapter, we discuss the people, process, and technol-
ogy aspects of DevOps.

	 Although the name DevOps suggests development-and-
operations-based capabilities, DevOps is an enterprise
capability that spans all stakeholders in an organization,
including business owners, architecture, design, develop-
ment, quality assurance (QA), operations, security, part-
ners, and suppliers. Excluding any stakeholder — internal
or external — leads to an incomplete implementation of
DevOps.

Knowing Where to Begin
This section provides guidance on how to get started with
DevOps, including creating the right culture, identifying busi-
ness challenges, and finding those bottlenecks to eliminate.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 16

Identifying business objectives
The first task in creating a culture is getting everyone headed
in the same direction and working toward the same goal,
which means identifying common business objectives for the
team and the organization as a whole. It’s important to incent
the entire team based on business outcomes versus conflict-
ing team incentives. When people know what common goal
they’re working toward and how their progress toward that
goal is going to be measured, fewer challenges exist from
teams or practitioners that have their own priorities.

	 DevOps isn’t the goal. It helps you reach your goals.

Chapters 4 and 5 highlight several new business challenges
that DevOps addresses. Your organization can use those
challenges as a starting point to identify goals that it wants
to achieve; then it can develop a common set of milestones
toward those goals for different teams of stakeholders to use.

Identifying bottlenecks in
the delivery pipeline
The biggest sources of inefficiencies in the delivery pipeline
have been categorized as the following:

	 ✓	Unnecessary overhead (having to repeatedly communi-
cate the same information and knowledge)

	 ✓	Unnecessary rework (defects being uncovered in testing
or production forcing assignments back to the develop-
ment team)

	 ✓	Over-production (functionality developed that wasn’t
required)

One of the biggest bottlenecks in the delivery pipeline is
deploying infrastructure. The adoption of a DevOps approach
increases the velocity of application delivery and puts pres-
sure on the infrastructure to respond more quickly. That is
where software-defined environments enable you to capture
infrastructure as a kind of programmable and repeatable
pattern, thereby accelerating deployments. Check out the

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 17
section “Infrastructure as Code” later in this chapter for more
information.

Drilling down further, you may want to optimize the pipeline
with an even flow from end to end. The throughput of each
process must be equal in order to avoid backlogs. To help
achieve this balance, you need to instrument or measure the
delivery pipeline at key points so you can minimize the wait
time in backlog queues, optimize the work in progress, and
adjust capacity and flow.

People in DevOps
This section addresses the people aspect of adopting DevOps,
including creating the necessary culture.

DevOps culture
At its root, DevOps is a cultural movement; it’s all about
people. An organization may adopt the most efficient pro-
cesses or automated tools possible, but they’re useless with-
out the people who eventually must execute those processes
and use those tools. Building a DevOps culture, therefore, is at
the core of DevOps adoption.

	 A DevOps culture is characterized by a high degree of collabo-
ration across roles, focus on business instead of departmental
objectives, trust, and high value placed on learning through
experimentation.

Building a culture isn’t like adopting a process or a tool. It
requires (for lack of a better term) social engineering of teams
of people, each with unique predispositions, experiences, and
biases. This diversity can make culture-building challenging
and difficult.

	 Lean and agile transformation practices such as Scaled Agile
Framework (SAFe), Disciplined Agile Delivery (DAD), and
Scrum are at the core of DevOps, and if your organization has
already applied these, they can be leveraged to help adopt a
DevOps culture.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 18

	 Building a DevOps culture requires the leaders of the organi-
zation to work with their teams to create an environment and
culture of collaboration and sharing. Leaders must remove
any self-imposed barriers to cooperation. Typical measure-
ments reward operations teams for uptime and stability, and
reward developers for new features delivered, but they pit
these groups against each other. Operations knows that the
best protection for production is to accept no changes, for
example, and Development has little incentive to focus on
quality. Replace these measurements with shared responsibil-
ity for delivering new capabilities quickly and safely.

The leaders of the organization should further encourage col-
laboration by improving visibility. Establishing a common set
of collaboration tools is essential, especially when teams are
geographically distributed and can’t work together in person.
Giving all stakeholders visibility into a project’s goals and
status is crucial for building a DevOps culture based on trust
and collaboration.

	 Sometimes, building a DevOps culture requires people to
change. Those who are unwilling to change — that is, to adopt
the DevOps culture — may need to be reassigned.

Measuring culture
Measuring culture is extremely diffi-
cult. How do you accurately measure
improved collaboration or improved
morale? You could take a direct mea-
sure of attitudes and team morale by
taking surveys, but surveys can have
a high statistical error rate, as teams
usually are small.

Conversely, you can take an indirect
measure by tracking how often a

development team member reaches
out to a member of an operations or
QA team to collaborate on resolving
an issue without going through offi-
cial channels or multiple layers of
management.

Collaboration and communication
across stakeholders — that’s the
culture of DevOps.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 19

DevOps team
The arguments for and against having a separate DevOps
team are as old as the concept itself. Some organizations,
such as Netflix, don’t have separate development and opera-
tions teams; instead, a single “NoOps” team owns both sets
of responsibilities. Other organizations have succeeded with
DevOps liaison teams, which resolve any conflicts and pro-
mote collaboration. Such a team may be an existing tools
group or process group, or it may be a new team staffed by
representatives of all teams that have a stake in the applica-
tion being delivered.

If you choose to have a DevOps team, your most important
goal is to ensure that it functions as a center of excellence
that facilitates collaboration without adding a new layer of
bureaucracy or becoming the team that owns addressing all
DevOps related problems — a development that would defeat
the purpose of adopting a DevOps culture.

Process in DevOps
In the preceding section, we discussed the role of people and
culture in adopting DevOps. Processes define what those
people do. Your organization can have a great culture of col-
laboration, but if people are doing the wrong things or doing
the right things in the wrong way, failure is still likely.

A vast number of processes are identified with DevOps — too
many to cover in this book. This section discusses some
of the key processes in light of their adoption across an
enterprise.

DevOps as a business process
DevOps as a capability affects a whole business. It makes the
business more agile and improves its delivery of capabilities
to customers. You can extend DevOps further by looking at
it as a business process: a collection of activities or tasks that
produces a specific result (service or product) for customers.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 20
In the reference architecture introduced in Chapter 2, the
DevOps business process involves taking capabilities from
the idea (typically identified with business owners) through
development and testing to production.

	 Although this business process isn’t mature enough to be cap-
tured in a set of simple process flows, you should capture the
process flows that your organization already uses to deliver
capabilities. Then you can identify areas of improvement,
both by improving the processes themselves and by introduc-
ing automation (see the “Technology in DevOps” section, later
in this chapter).

Change management process
Change management is a set of activities designed to control,
manage, and track change by identifying the work products
that are likely to change and the processes used to imple-
ment that change. The change management process that an
organization uses is an inherent part of the broader DevOps
process flow. Change management drives the way the DevOps
processes absorb and react to change requests and customer
feedback.

	 Organizations that have adopted application life cycle man-
agement (ALM) already have well-defined and (probably)
automated change management processes in place.

Change management should include processes that enable the
following capabilities:

	 ✓	Work-item management

	 ✓	Configurable work-item workflows

	 ✓	Project configuration management

	 ✓	Planning (agile and iterative)

	 ✓	Role-based artifact access control

Traditional change management approaches tend to be lim-
ited to change request or defect management, with limited
capability to trace the events between the change requests
or defects and the associated code or requirements. These
approaches don’t provide integrated work-item management

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 21
across the life cycle or built-in capability to trace all types
of assets. DevOps, however, requires all stakeholders to be
able to view and collaborate on all changes across the soft-
ware development life cycle.

DevOps- or ALM-centric change management includes pro-
cesses that provide work-item management for all projects,
tasks, and associated assets — not just those affected by
change requests or defects. It also includes processes that
enable the enterprise to link work items to all artifacts, proj-
ect assets, and other work items that are created, modified,
referenced, or deleted by any practitioner who works on
them. These processes give team members role-based access
to all change-related information and also support iterative
and agile project development efforts.

DevOps techniques
Following are a few specific techniques that you need to
include when you adopt DevOps:

	 ✓	Continuous improvement

	 ✓	Release planning

	 ✓	Continuous integration

	 ✓	Continuous delivery

	 ✓	Continuous testing

	 ✓	Continuous monitoring and feedback

The following sections examine these techniques in detail.

Continuous improvement
In true lean-thinking fashion, process adoption isn’t a one-
time action; it’s an ongoing process. An organization should
have built-in processes that identify areas for improvement
as the organization matures and learns from the processes
it has adopted. Many businesses have process improvement
teams that work on improving processes based on obser-
vations and lessons learned; others allow the teams that
adopt the processes to self-assess and determine their own
process-improvement paths. Regardless of the method used,
the goal is to enable continuous improvement.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 22

Release planning
Release planning is a critical business function, driven by
business needs to offer capabilities to customers and the
timelines of these needs. Therefore, businesses require well-
defined release planning and management processes that
drive release roadmaps, project plans, and delivery sched-
ules, as well as end-to-end traceability across these processes.

Most companies today accomplish this task by using
spreadsheets and holding meetings (often, long ones) with
all stakeholders across the business to track all business
needs applications under development, their development
status, and release plans. Well-defined processes and auto-
mation, however, eliminate the need for those spreadsheets and
meetings, and enable streamlined and — more importantly —
predictable releases. Leveraging lean and agile practices
also results in smaller, more frequent releases, permitting
enhanced focus on quality.

Continuous integration
Continuous integration (described in Chapter 2) adds tremen-
dous value in DevOps by allowing large teams of developers,
working on cross-technology components in multiple loca-
tions, to deliver software in an agile manner. It also ensures
that each team’s work is continuously integrated with that
of other development teams and then validated. Continuous
integration thereby reduces risk and identifies issues earlier
in the software development life cycle.

Continuous delivery
Continuous integration naturally leads to the practice of con-
tinuous delivery: the process of automating the deployment
of the software to the testing, system testing, staging, and
production environments. Although some organizations stop
short of production, those that adopt DevOps generally use
the same automated process in all environments to improve
efficiency and reduce the risk introduced by inconsistent
processes.

In test environments, automating configuration, refreshing
test data, and then deploying the software to the test environ-
ment followed by the execution of automated tests speeds
feedback cycles of test results back to development.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 23
	 Adopting continuous delivery typically is the most critical

part of adopting DevOps. To many DevOps practitioners,
DevOps is limited to continuous delivery, so most tools pro-
moted as DevOps tools address only this process. As you
see throughout this book, however, DevOps is much broader
in scope. Continuous delivery is an essential component of
DevOps but not the only component.

	 Based on your organization’s business needs and pressing
challenges, you may choose to start adoption with another of
the processes or adoption paths described in Chapter 2.

Continuous testing
We introduced continuous testing in Chapter 2. From a pro-
cess perspective, you need to adopt processes in three areas
to enable continuous testing:

	 ✓	Test environment provisioning and configuration

	 ✓	Test data management

	 ✓	Test integration, function, performance, and security

In an organization, QA teams need to determine what processes
to adopt for each area. The processes that they adopt may vary
from project to project, based on individual testing needs and
on the requirements of service level agreements. Customer-
facing applications may need more security testing than inter-
nal applications do, for example. Test environment provisioning
and test data management are more important challenges for
projects that use agile methodologies and practice continuous
integration than they are for projects that use waterfall method-
ology and test only once every few months. Likewise, function
and performance test requirements for complex applications
with components that have different delivery cycles are differ-
ent from those for simple, monolithic web apps.

Continuous monitoring and feedback
Customer feedback comes in different forms, such as tick-
ets opened by customers, formal change requests, informal
complaints, and ratings in app stores. Especially due to the
popularity of social media and app stores (see Chapter 5),
businesses need well-defined processes to absorb the feed-
back from myriad sources and incorporate them into software
delivery plans. These processes also need to be agile enough
to adapt to market and regulatory changes.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 24

Feedback also comes from monitoring data. This data comes
from the servers running the application; from Development,
QA, and Production; or from metrics tools embedded in the
application that capture user actions.

	 Data overload is possible, so businesses need data-capture
and data-use processes that enhance their applications and
the environments they run in.

Technology in DevOps
Technology enables people to focus on high-value creative work
while delegating routine tasks to automation. Technology also
allows teams of practitioners to leverage and scale their time
and abilities.

If an organization is building or maintaining multiple applica-
tions, everything it does has to be repeatable, in a reliable
manner, to ensure quality across all applications. It can’t start
from scratch with each new release or bug fix for every appli-
cation. The organization has to reuse assets, code, and prac-
tices to be cost-effective and efficient.

Measuring process adoption
You can measure the success of pro-
cess adoption by seeing whether a
set of efficiency and quality metrics
is improving over time. This type of
measurement has two prerequisites:

	✓	 You must identify the right set
of efficiency and quality met-
rics. These metrics should really
matter to the business.

	✓	 You need to establish a base-
line against which to measure
improvement.

You can use any of several well-
defined frameworks to measure
process maturity. For DevOps-
specific processes, models such
as the new IBM DevOps Maturity
Model can assess maturity. More
information about the IBM maturity
model is available at ibm.biz/
adoptingdevops.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://ibm.biz/adoptingdevops
http://ibm.biz/adoptingdevops

 Chapter 3: Adopting DevOps 25
Standardizing automation also makes people more effective (see
“People in DevOps,” earlier in this chapter). Organizations may
experience turnover in employees, contractors, or resource pro-
viders; people may move from project to project. But a common
set of tools allows practitioners to work anywhere, and new team
members need to learn only one set of tools — a process that’s
efficient, cost-effective, repeatable, and scalable.

Infrastructure as code
Infrastructure as code is a core capability of DevOps that
allows organizations to manage the scale and the speed with
which environments need to be provisioned and configured to
enable continuous delivery.

Evolving around the notion of infrastructure as code is the
notion of software-defined environments. Whereas infrastructure
as code deals with capturing node definitions and configurations
as code, software-defined environments use technologies that
define entire systems made up of multiple nodes — not just their
configurations, but also their definitions, topologies, roles, rela-
tionships, workloads and workload policies, and behavior.

Three kinds of automation tools are available for managing
infrastructure as code:

	 ✓	Application- or middleware-centric tools: These tools
usually are capable of managing as code both applica-
tion servers and the applications that run on them. Such
tools are specialized, bundled with libraries of typical
automation tasks for the technologies that they support.
They can’t perform low-level tasks such as configuring
an operating-system (OS) setting, but they can fully auto-
mate server and application-level tasks.

	 ✓	Environment and deployment tools: These tools are a
new class of tools that have the capability to deploy both
the infrastructure configurations and application code.

	 ✓	Generic tools: These tools aren’t specialized for any tech-
nology and can be scripted to perform several kinds of
tasks, all the way from configuring an OS on a virtual or
physical node to configuring firewall ports. They require
much more work up front than application- or middleware-
centric tools do, but they can handle a greater range of
tasks.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 26
	 By using an environment management and deployment tool

like IBM UrbanCode Deploy with Patterns, organizations can
design, deploy, and reuse environments quickly and help
accelerate the delivery pipeline.

Delivery pipeline
A delivery pipeline consists of the stages an application goes
through from development through to production. Figure 3-1
shows a typical set of stages. These stages may vary from
one organization to another, however, and may also vary from
one application to another based on the organization’s needs,
software delivery process, and maturity. The level of automa-
tion may also vary. Some organizations fully automate their
delivery pipelines; others put their software through manual
checks and gates due to regulatory or company requirements.
You don’t have to address all stages at once. Start by focusing
on the critical parts of organization — not everything all at
once — and then gradually broaden to include all stages.

Figure 3-1: �Stages of a typical DevOps delivery pipeline.

A typical delivery pipeline has the stages described in the fol-
lowing sections.

Development environment
An application’s development effort takes place in a develop-
ment environment, which provides multiple tools that enable
the developers to write and test code. Beyond the integrated
development environment (IDE) tools that developers use to
write code, this stage includes tools that enable collaborative
development, such as tools for source control management,
work-item management, collaboration, unit testing, and project

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 27
planning. Tools in this stage typically are cross-platform and
cross-technology, based on the type of development being
undertaken.

Build stage
The build stage is where the code is compiled to create and unit
test the binaries to be deployed. Multiple build tools may be
used in this stage, based on cross-platform and cross-technology
needs. Development organizations typically use build servers to
facilitate the large number of builds required on an ongoing basis
to enable continuous integration.

Package repository
A package repository (also referred to as an asset repository
or artifact repository) is a common storage mechanism for
the binaries created during the build stage. These reposi-
tories also need to store the assets associated with the
binaries to facilitate their deployment, such as configuration
files, infrastructure-as-code files, and deployment scripts.

Test environment
A test environment is where the QA, user acceptance, and devel-
opment/testing teams do the actual testing. Many flavors of
tools are used in this stage, based on QA needs. Here are a few
examples:

	 ✓	Test environment management: These tools facilitate
provisioning and configuring the test environments. They
include infrastructure-as-code technologies and (if the
environment is in the cloud) cloud provisioning and man-
agement tools.

	 ✓	Test data management: For any organization that wants
to enable continuous testing, managing test data is an
essential function. The number of tests that can be run
and the frequency with which they’re run are limited by
the amount of data that’s available for testing and the
speed at which that data can be refreshed.

	 ✓	Test integration, function, performance, and security:
Automated tools are available for each of these types of
tests. These tools should be integrated with a common
test asset management tool or repository where all test
scenarios, test scripts, and associated results can be
stored and traceability established back to code, require-
ments, and defects.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 28
	 ✓	Service virtualization: Modern applications aren’t simple,

monolithic applications. They’re complex systems that are
dependent on other applications, application servers, data-
bases, and even third-party applications and data sources.
Unfortunately, at test time, these components may be
unavailable or costly. Service virtualization solutions simu-
late the behavior — functionality and performance — of
select components within an application to enable end-to-
end testing of the application as a whole. These tools create
stubs (virtual components) of the applications and services
that are required for the tests to run. The behavior and
performance of the application can be tested as it interacts
with these stubs. IBM’s Rational Test Virtualization Server
provides such test virtualization capabilities.

Stage and production environments
Applications are deployed in the staging and production envi-
ronments. Tools used in these stages include environment
management and provisioning tools. Tools for infrastructure
as code also play a critical role in these stages, due to the
large scale at which the environment in these stages exist.
With the advent of virtualization and cloud technologies,
stage and production environments can today be made up
of hundreds or even thousands of servers. Monitoring tools
allow organizations to monitor the deployed applications in
production.

Deployment automation and
release management
Managing the automation of application deployment from one
stage to the next requires specialized tools, some of which we
discuss in the following sections.

Deployment automation
Deployment automation tools are the core tools in the
DevOps space. Such tools perform orchestrated deployments
and track which version is deployed on which node at any
stage of the build and delivery pipeline. They can also manage
the configurations of the environments of all the stages to
which the application components must be deployed.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 3: Adopting DevOps 29

Deployment automation tools manage the software compo-
nents that get deployed, the middleware components and
middleware configurations that need to be updated, the data-
base components that need to be changed, and the configura-
tion changes to the environments to which these components
are to be deployed. These tools also capture and automate
the processes to carry out these deployments and configura-
tion changes. IBM UrbanCode Deploy is such a deployment
automation tool.

Release management
Orchestrating the release plans and deployments associated
with each release requires coordination across the business,
development, QA, and operations teams. Release manage-
ment tools allow organizations to plan and execute releases,
provide a single collaboration portal for all stakeholders in
a release, and provide traceability for a release and its com-
ponents across all stages of the build and delivery pipeline.
IBM UrbanCode Release provides such release management
capabilities.

Measuring technology adoption
Measuring return on investment
tools and technology is fairly
straightforward. Typically, you can
measure the efficiencies created by
automation. Also, automated tools
allow you to enhance the scalability

and reliability of tasks — something
that isn’t always possible with
manual tools. Finally, using an inte-
grated set of automated tools facili-
tates collaboration, traceability, and
improved quality.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 30

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

Looking at How Cloud
Accelerates DevOps

In This Chapter
▶	Using cloud as an enabler for DevOps

▶	Understanding full-stack deployments

▶	Looking at different cloud service models

▶	Uncovering the hybrid cloud

D
evOps and cloud are both catalysts and enablers for
each other. As organizations adopt cloud, the value

proposition of leveraging cloud for hosting a DevOps work-
load becomes self-evident. The flexibility, resilience, agility,
and the services a cloud platform brings allow for stream-
lining an application delivery pipeline hosted on the cloud.
Environments from development through testing and all
the way to production can be provisioned and configured
as needed and when needed. This process minimizes the
environment-related bottlenecks in the delivery process.
Organizations are also looking to leverage cloud platforms
for either reducing the cost of development and test environ-
ments or to provide a modern streamlined developer experi-
ence for their practitioners. These make for an extremely
compelling business case for cloud adoption with and for
DevOps.

This chapter explores different models of cloud for DevOps
and examines the value proposition of DevOps as a workload
on cloud.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 32

Using Cloud as an Enabler
for DevOps

The main goal of DevOps is to minimize bottlenecks in the
delivery pipeline, making it more efficient and lean. One of the
biggest bottlenecks that organizations experience is for envi-
ronment availability and configuration. It isn’t uncommon for
practitioners, especially developers and testers, to requisition
an environment through a formal ticketing process, and this
process request can take days if not weeks to fulfill.

One of the tenets of DevOps is to develop and test on a
production-like environment. Adding to the bottleneck of
environment availability is the challenge of the available
environment not matching the production environment. This
mismatch may be just as simple as differences in configura-
tion of the environment — at the operating system (OS) or
middleware level — or as drastic as a completely different
OS or middleware type on the development environments
from what is used in production.

	 The lack of availability of environments results in poten-
tially significant wait times for practitioners. The mismatch
between development and production environments can
introduce significant quality issues because the developers
can’t verify how the application being developed will behave
in the production environment, or if it can even be deployed
to production through the processes used to deploy to test
environments.

Cloud addresses these problems in the following ways:

	 ✓	The speed of environment provisioning on cloud plat-
forms can provide practitioner self-service to the prac-
titioners with on-demand environment availability and
access.

	 ✓	The ability to dynamically provision and de-provision
these environments as needed allows for better environ-
ment management and cost reduction by reducing the
need for permanent, static test environments.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Looking at How Cloud Accelerates DevOps 33
	 ✓	The ability to leverage “pattern” technologies that allow

organizations to define and version environments as soft-
ware allows for the availability of provisioning environ-
ments that match the practitioners’ needs — and more
importantly are production-like environments.

	 ✓	From an automation perspective, the availability of appli-
cation deployment automation technologies such as IBM
UrbanCode Deploy can with one tool provision the cloud
environment and deploy the right versions of applica-
tions to these environments as needed and when needed.
They can also rapidly configure the environment and the
application to match the needs of the practitioners.

	 ✓	The availability of service virtualization technology, such
as IBM Rational Test Virtualization Server, operating in
conjunction with cloud environments, allows for the
simulation of services that are needed for testing without
having to provision real instances of the services.

Figure 4-1 shows how cloud environments work in conjunction
with deployment automation and service virtualization tech-
nologies to provide end-to-end Develop/Test environments.

Figure 4-1: �End-to-end Develop/Test in the cloud.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 34
	 Cloud without DevOps means not leveraging all the benefits

of cloud. Adopting DevOps with environments hosted in the
cloud enable the capabilities that provide the full benefit of
cloud to organizations delivering software applications.

Full-Stack Deployments
Deploying a cloud application consists of deploying the appli-
cation and configuring the cloud environment on which it
runs. These two tasks can be performed separately, but when
they’re combined, this is known as a full-stack deployment. We
discuss these two approaches in more detail in this section.

The first approach is to separate the cloud environment pro-
visioning from application deployment. In this scenario, there
is no single point of orchestration of cloud environments and
the applications that are deployed on them. The application
deployment automation tool simply sees cloud environments
as static environments. This scenario doesn’t maximize the
benefits of deploying to cloud.

The second approach is to leverage the deployment auto-
mation tool as the single orchestration tool for cloud envi-
ronment provisioning and application deployment to the
environments provisioned. You can achieve this by creating
“blueprints” that capture the cloud environment definition
and topology and then map the application components and
configurations to the nodes defined in the cloud environment.

Multiple pattern technologies such as the IBM Virtual System
Patterns and OpenStack HOT templates can be used to define
the cloud environments as templates. Deployment automa-
tion tools such as IBM UrbanCode Deploy with Patterns can
deliver full-stack provisioning using these blueprints. This
includes provisioning the cloud environment defined in the
blueprint and deploying the application to the provisioned
environment. After the environment is provisioned, further
application, configuration, and content changes can be con-
tinuously deployed to the cloud environment as updates.

Alternatively, organizations can choose to always have
full stack deployment where environments and the associ-
ated applications are always provisioned together as one

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Looking at How Cloud Accelerates DevOps 35
deployable asset. In this case, no updates are made to the
existing environment.

Choosing a Cloud Service
Model for DevOps

When adopting cloud, you first want to decide on the
scope of responsibility that you plan to hand over to the
cloud platform and what responsibility you want to take on
yourself. There are two primary service models for cloud:
Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS).

IaaS
When adopting cloud under an IaaS service model, the cloud
platform manages the underlying infrastructure and provides
you with capabilities and services that allow you to manage
all the virtualized infrastructure. The installation, patching,
and management of the OS, middleware, data, and application
remain the responsibility of the user.

In the context of adopting DevOps as a workload on cloud,
the decision of which cloud service model to use determines
how DevOps is adopted. For an IaaS service model, the user
organization is responsible for managing the entire delivery
pipeline. All the tools and integrations of the delivery pipeline
become the responsibility of the user organization, including
acquiring the right toolset and ensuring they’re integrated to
form the delivery pipeline. In addition, they need to ensure
that the collaboration between the development and the oper-
ations teams follows a DevOps culture. Just because a cloud
platform is utilized doesn’t change the need to remove the
silos of responsibilities between the developers delivering the
code and the operations teams delivering the infrastructure,
now as a cloud-based service.

While the cloud adds tremendous value in terms of providing
IaaS to application delivery teams, they still need to have all
the right DevOps capabilities in place to deliver the desired
value that DevOps brings.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 36

Separation of duties
One of the key questions when lever-
aging DevOps on IaaS cloud is to define
the separation of duties between the
cloud platform and the application
deployment tool. Which tool is respon-
sible for what? An easy way to look

at it is from a perspective of slow and
fast moving assets in the cloud stack.
The sidebar figure shows the different
layers of an application stack from the
OS, storage, and network layer all the
way up to the application.

The application, data, and middle-
ware configuration layers are fast
moving in nature. These change
often because the application, its
data, and its usage iterate. This
velocity of change can be very high
for an application still under devel-
opment. The lower layers under this
include the middleware (application
server, database, and so on), the OS,
and storage, and they don’t change
as often. Because updating and
re-provisioning all the layers for a

simple change that just impacts the
application, its content, or configu-
ration isn’t efficient, it makes sense
to separate the duties of these fast
versus slow moving layers between
an application deployment and cloud
management tool. The fast moving
layers are managed and automated
by the application deployment tool
and the slow moving layers by the
cloud management software pro-
vided by the cloud platform.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Looking at How Cloud Accelerates DevOps 37

PaaS
When adopting a PaaS cloud model, your only responsibility
as the user becomes the application and data. All other capa-
bilities are provided by the cloud platform as services. The
result is a significantly enhanced practitioner experience for
the application delivery teams. The application development
and testing tools are now available as services on the platform
that can be accessed by the practitioners. The application
delivery organization is no longer responsible for managing
the delivery pipeline. Instead, it’s embedded in the PaaS and
allows for practitioners to focus exclusively on rapidly deliv-
ering applications. The development and test tools and the
infrastructure provisioning are all abstracted from the practi-
tioners as services, which allows the practitioners to focus on
their core duties of delivering applications.

	 IBM Bluemix is a PaaS. IBM and its partners manage the plat-
form and the services provided on it. The platform embeds IBM
DevOps Services — a set of services providing all the capabili-
ties for teams to adopt DevOps and more specifically an appli-
cation delivery pipeline as a set of services. Application delivery
teams can use the services without any concern about how the
services are hosted and delivered to them. The DevOps serv
ices include the following:

	 ✓	Web-based Integrated Development Environment (IDE) as
a service

	 ✓	Build as a service

	 ✓	Planning and task management as a service

	 ✓	Security scanning as a service

	 ✓	Deploy as a service

	 ✓	Monitoring and analytics as a service

The platform also provides scalable runtime environments for
applications running in different environments in the delivery
life cycle — from development, testing, and staging all the way
to production.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 38

Understanding What
a Hybrid Cloud Is

Hybrid cloud has become an extremely common term in the
cloud space. It’s probably overused to describe multiple cloud
scenarios where either multiple cloud technologies coexist
or where cloud and physical infrastructure coexists. A simple
way to define hybrid cloud is to start by looking at these
myriad cloud scenarios:

	 ✓	Cloud and physical infrastructure: This is an extremely
common hybrid cloud scenario. Unless an organization
is born on the cloud, this is actually the default scenario.
All given organizations have workloads and applications
that are currently running on their existing physical infra-
structure. In many cases, some of these applications con-
tinue to run on physical infrastructure. Typical examples
include mainframe applications and data heavy system
of record applications that aren’t going to be migrated to
the cloud, due to technology or cost constraints. Even
if an organization is migrating all its workloads to the
cloud, the migration can’t take place overnight and will
have a potentially extensive period where the physical
and the cloud infrastructures will coexist.

	 ✓	On-premise and off-premise cloud: In this scenario, an
organization may adopt both an off-premise cloud (public
or virtual-private) for some applications and workloads and
an on-premise (private) cloud for others. An example would
be an organization that’s leveraging low-cost off-premise
cloud for development environments and an on-premise
self-managed cloud in its own data center for all production
workloads.

	 ✓	IaaS and PaaS: This scenario includes customers that
have adopted a PaaS cloud service model for some
workloads — new innovative systems of engagement
type applications, for example — and IaaS for more tra-
ditional system of record workloads.

For DevOps adoption, the existence of hybrid cloud intro-
duces new challenges because it results in application deliv-
ery pipelines that span across complex hybrid cloud and

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 4: Looking at How Cloud Accelerates DevOps 39
physical environments. Examples of these hybrid cloud envi-
ronments include the following:

	 ✓	An organization may choose to use a public cloud for the
development, testing, and other non-production environ-
ments, while using an on-premise cloud or even physical
infrastructure for production.

	 ✓	An organization may have some system of engagement
applications deployed to a cloud environment, while
the systems of record applications that provide back-
end services for the core business applications may still
reside on physical infrastructure, such as a mainframe.

	 ✓	Organizations may leverage a public PaaS for experimen-
tation with innovative applications and want to bring
them to a private cloud, once an experiment succeeds.

	 ✓	Organizations may want to have portability of applica-
tion workloads across multiple cloud platforms in order
to ensure vendor lock-in doesn’t exist or to provide the
ability to deploy critical workloads across multiple cloud
vendors.

The core requirement for adopting DevOps with a hybrid
cloud approach is the need for application deployment across
these multiple cloud and physical environments. Applications
like IBM’s UrbanCode Deploy with Patterns utilize applica-
tion blueprints to map applications and configurations to
multiple environments, physical and cloud, allowing for auto-
mated application deployment across complex, hybrid cloud
environments.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 40

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

Using DevOps to Solve
New Challenges

In This Chapter
▶	Enabling mobile applications

▶	Dealing with ALM processes

▶	Scaling agile

▶	Managing multiple-tier applications

▶	Looking at DevOps in the enterprise

▶	Working with supply chains

▶	Navigating the Internet of Things

D
evOps originated in so-called born on the web compa-
nies (companies that originated on the Internet) such

as Etsy, Flickr, and Netflix. These companies, while solving
complex technology challenges at a very large scale, had
fairly simple architectures — unlike large enterprises that
grew around legacy systems and/or through acquisitions and
mergers, with complex multi-technology systems that had to
work together. These challenges are further aggravated by the
demands being put on modern enterprises by new technolo-
gies like mobile and application delivery models such as soft-
ware supply chains.

This chapter explores some of these challenges that enter-
prises face and that DevOps can help solve.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 42

Mobile Applications
In an enterprise, mobile apps are typically not stand-alone
apps. They have very little business logic on the mobile
device itself and serve more as front-ends to a multiple enter-
prise applications already in use by the enterprise. These
back-end enterprise applications may range from transaction
processing systems to employee portals to customer acquisi-
tion systems. Mobile development and delivery is complex
and requires a set of dependent services to be delivered in a
coordinated fashion in a reliable and efficient manner.

For enterprise mobile apps, release cycles and new feature
releases need to be coordinated with those of the enterprise
applications and services that the mobile apps interact with.
Therefore, DevOps adoption should include mobile-app teams
as first-class citizens and participants along with the rest of
the enterprise software development teams.

DevOps and app stores
One unique aspect of mobile apps
is the need for deployment to app
stores. Most mobile apps can’t be
deployed directly to mobile devices;
they have to go through a vendor-
managed app store. Apple intro-
duced this distribution format with
its App Store (and locked its devices
to prevent direct installation of apps
by app developers or vendors).
Device manufacturers such as
Research In Motion, Google, and
Microsoft, which once allowed
direct app installation, now follow
the Apple model.

This situation adds an asynchronous
step to the deployment process.
Developers can no longer deploy
updates to an app on demand. Even
for critical bug fixes, new app ver-
sions have to go through an app
store’s submission and review pro-
cesses. Continuous delivery becomes
submitting and waiting. Continuous
deployment to development and test-
ing remains available, however, with
the test environment being simulators
for the devices on which the appli-
cation will be deployed or banks of
physical devices.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using DevOps to Solve New Challenges 43
	 Eighty percent of the world’s corporate data originates on the

mainframe, and 70 percent of all transactions touch a main-
frame. Unlocking a mobile path to these mainframe capabili-
ties can transform the way you conduct business and engage
with customers, but getting there can be challenging. You
may be confronted with skill gaps, organizational silos, and
multiple platforms that result in long release cycles, unneces-
sary delays, and wasted resources. To provide mobile access
to enterprise applications, businesses are embracing DevOps,
a software delivery approach that focuses on speed and effi-
ciency without sacrificing stability and quality.

	 No specific DevOps concepts or principles apply solely to
mobile apps. Mobile apps, however, add to the need for
DevOps due to their inherent short development life cycles
and rapid change.

ALM Processes
Application life cycle management (ALM) is a set of processes
employed to manage the life of an application as it evolves
from an idea (a business need) to an application that’s
deployed and eventually under maintenance. Hence, looking
at DevOps as an end-to-end business capability makes ALM
the fundamental concept underlying the DevOps process.
DevOps broadens the scope of ALM to include business
owners, customers, and operations as part of the process.

The DevOps Develop/Test adoption path (see Chapter 2 for
more info) most closely aligns with the traditional ALM capa-
bilities of requirements management, change management,
version control, traceability, and test management. However,
other ALM capabilities such as tracking and planning occur as
part of the Steer adoption path, and dashboards and report-
ing are included in the Operate adoption path.

Scaling Agile
Lean and agile development are the underpinnings of the
DevOps approach — waste reduction from more efficient teams
is one of the results. Efficiency and repetition of best practices
lead to shorter development cycles, allowing teams to be more

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 44
innovative and responsive, thereby increasing customer value.
Scaling lean and agile principles beyond the development team
to a team of teams and across the entire product and software
delivery life cycle is core to the DevOps approach.

Many teams have already adopted agile and want to scale
their current processes as part of their DevOps adoption.
Many popular frameworks are available to help scale agile.
These frameworks include the Scaled Agile Framework (SAFe)
and Disciplined Agile Delivery (DAD). Some organizations
have also been effective at scaling the Scrum process to very
large teams. The purpose of these frameworks is to provide a
methodology for adopting agile at the enterprise level. That
means taking into consideration not just the development of
code but also including architecture, project funding, and gov-
ernance of the processes and roles required by management,
applying the very same lean and agile principles that have
worked well at the team level. No matter the framework used
to scale agile, you take those basic agile principles and apply
best practices to leverage them to drive efficiency and effec-
tiveness across the enterprise.

Multiple-Tier Applications
In a typical large IT shop, it’s not uncommon to find multiple-
tier applications that span many platforms, each with its own
unique development process, tools, and skill requirements.
These multi-tier systems often integrate applications on the
web, desktop, and mobile applications on the front-end and
back-end systems such as packaged applications, data ware-
house systems, applications running on mainframes, and
midrange systems. Managing and coordinating the releases of
the parts of multiple-tier systems, many of which may be on
different platforms, can be overwhelming even for the most
disciplined IT organization.

	 A sensible approach is to follow automated, consistent build,
configure, and deployment processes through all stages of devel-
opment. This approach ensures that you’re building all the parts
you need — and only the parts you need. It also ensures that the
application remains whole as changes come in and the project
moves through the cycle of testing, QA, and production. IBM
UrbanCode Deploy has an application model that helps auto-
mate the complex deployment of multiple-tier applications.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using DevOps to Solve New Challenges 45
Maintaining separate tools for different teams based on plat-
form is a reality in today’s multi-platform, multi-vendor world.
This is where open platforms such as IBM Jazz can integrate
disparate tools to provide a unified solution. Consistent
deployment practices can help ensure that teams are using
reliable, repeatable deployment across platforms to provide
true business value.

DevOps in the Enterprise
Today’s enterprise depends on the speed with which IT can
deliver software. These businesses typically operate sys-
tems of record applications (home grown or packaged apps)
deployed on mainframe and midrange systems. They face
many challenges:

	 ✓	Regulatory hurdles

	 ✓	Process complexity

	 ✓	Skills gaps

	 ✓	Organizational silos

	 ✓	Platforms and tools that result in long release cycles,
unnecessary delays, and wasted resources

DevOps at the enterprise level enables planning, develop-
ment, testing, and operations stakeholders to continuously
deliver software within their organizations. Enterprises today
deploy applications that are truly cross-platform — from
mobile to mainframe. The DevOps approach to development
uses lean principles to create an efficient and effective deliv-
ery pipeline that allows applications to be developed, tested,
and delivered as it helps raise the quality, increase the speed,
and reduce the costs of development.

	 Given the true multi-platform nature of today’s enterprises,
with the presence of mobile, cloud, distributed, and mainframe
applications — all of which need to be created, integrated,
deployed, and operated — the need for the efficiencies,
streamlining, and collaboration that DevOps provides is
becoming a key competitive differentiator.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 46

Supply Chains
With the increasing use of outsourcing and strategic partner-
ships to supply skills and capabilities to an enterprise, soft-
ware supply chains are becoming the norm. A supply chain
is a system of organizations, people, technology, activities,
information, and resources involved in moving a product or
service from supplier to customer. The various suppliers in
the chain may be internal or external to the enterprise.

In an organization that has adopted a supply-chain model
for delivering software, adopting DevOps can be a challenge,
because the relationships among suppliers are managed
more by contracts and service level agreements than by col-
laboration and communication. Such an organization can
still adopt DevOps, however. The core project teams retain
ownership of the planning and measurement capabilities, with
other capabilities being shared among the other suppliers. In
the delivery pipeline, different suppliers may own different
stages of the pipeline. Using common tool sets and a common
asset repository is therefore essential. A work-item manage-
ment tool, for example, provides reporting on all items being
worked on by all suppliers, as well as transfer of ownership
of work items across suppliers. Using a common asset reposi-
tory provides a mechanism for passing assets through the
pipeline, enabling continuous delivery.

The Internet of Things
The next big step for DevOps is its evolution into the systems
or embedded-devices space where it’s often referred to as
continuous engineering. When the Internet started, most of the
data shared on it was human-generated. Today, innumerable
Internet-connected devices (such as sensors and actuators)
generate much more data than humans do. This network of
inter-connected devices on the Internet is commonly referred
to as the Internet of Things.

In this space, DevOps is potentially even more essential, due
to the co-dependence of the hardware and the embedded
software that runs on it. DevOps principles are reflected in
continuous engineering to ensure that the embedded software

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 5: Using DevOps to Solve New Challenges 47
delivered to the devices is high-quality software with the right
engineering specifications.

“Operations” in continuous engineering is replaced by hard-
ware or systems engineers who design and build custom hard-
ware for the devices. Collaboration between the development
and testing teams and the systems engineers is crucial to
ensure that hardware and software are developed and deliv-
ered in a coordinated manner despite hardware and software
development needing to follow different delivery cycles. The
development and testing needs for continuous delivery and
testing remain the same. Simulators are used to test software
and hardware during development.

Anti-patterns
In the real world, there are always
limitations to adoption of DevOps
principles. Some of these limitations
are functions of the industries and
environments in which a business
exists, such as regulatory compli-
ance, complex hardware systems,
or immature software delivery capa-
bilities. In such cases, DevOps needs
to be adopted in light of anti-patterns
(ineffective or counterproductive
patterns) that may not be accept-
able for an organization, based on its
business needs.

Water-SCRUM-fall

Forrester (www.forrester.com),
a global research and advisory com-
pany, coined the term Water-SCRUM-
fall to describe the current state of
adoption of agile software develop-
ment methodologies. From a DevOps
perspective, this means that whereas

development teams may have
adopted agile practices, the teams
around them may still have manual,
waterfall-style processes that don’t
allow for continuous delivery. In sev-
eral enterprises, this situation results
from the corporate culture. A com-
pany that adopts DevOps must embed
manual processes in broader DevOps
practices.

NoOps

In a NoOps organization, Operations
is eliminated as a separate depart-
ment, and its responsibilities are
merged into those of Development.
Netflix, an Internet television pro-
vider, is a proponent of this method.
NoOps may work well for some
organizations, but some waiting is
involved to see if this organizational
model will have wider practical
appeal.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://www.forrester.com

DevOps For Dummies, 2nd IBM Limited Edition 48

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

Making DevOps Work:
IBM’s Story

In This Chapter
▶	Understanding the best practices for executives

▶	Organizing your team

▶	Identifying DevOps goals

▶	Taking note of the DevOps transformation

▶	Learning from the DevOps results

D
evOps is being adopted company-wide at IBM and
continues to regularly evolve. This adoption is a result

of the success of using a DevOps approach pioneered at
IBM Software Group (SWG) Rational and now being used at
Watson, Tivoli, Global Business Services, and other divisions.
This chapter provides a case study of IBM SWG’s own adop-
tion of DevOps capabilities by the IBM Rational Collaborative
Lifecycle Management product team.

	 This software delivery effort is unique in that it’s developed in
the open — the software delivery team delivers all its develop-
ment artifacts and on-going work, including all detailed work-
items, on jazz.net. This website is open to the public, and
any registered user can look at the work planned, work ongo-
ing, and the history of all the development work done for the
software products.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

https://jazz.net

DevOps For Dummies, 2nd IBM Limited Edition 50

Taking a Look at the
Executive’s Role

Culture is a hidden thread in an organization. It is based on
values and behaviors that evolve from both management and
employees. Many times you don’t actually understand the
culture of the organization until you embark on a significant
change. There will be those skeptics who take a wait and see
approach to determine if this is the passing fad of the month.
Leaders will emerge. It is essential to establish an approach to
understand these dynamics and to know who is who so you
can address the real inhibitors.

	 To address the cultural dynamic, the IBM SWG executive used
a number of approaches:

	 ✓	Select the right leader: The leader’s role is to pull
together the differing viewpoints to start to bring the
team to a common set of objectives, inhibitors, process
changes, and decisions on where to start first.

	 ✓	Involve stakeholders: Support for these changes has to
come from the leadership, management, and individual
contributors across different development disciplines.
There must be business stakeholders, architects, devel-
opers, testers, and operations involved and named lead-
ers from these areas who are champions for change.

	 ✓	Measure improvements and outcomes: It’s critical to
have a set of key metrics that incorporate both the needed
efficiencies and the business outcomes. These goals and
measurements should set a high bar and hold people
accountable, but they shouldn’t cause disengagement.

	 ✓	Build momentum with early successes: Understanding
these inefficiencies and measuring the improvements in
each area builds momentum for change.

	 ✓	Communicate and listen: As a leader, it’s important to
understand the real dynamics of how the change is taking
hold in the team. Spending time having one-on-one con-
versations and regular face-to-face interactions with the
technical teams, management, and business leaders helps
to gauge the buy-in of the team, their perspective on the
inhibitors, and, equally important, an opportunity for man-
agement to share perspectives on priorities and progress.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Making DevOps Work: IBM’s Story 51
If you’re an executive, you should support the teams and
make yourself available to understand and remove obstacles.
Operating as a whole team with clear business goals is neces-
sary to bringing everyone together on the same path.

Putting Together the Team
The IBM SWG Rational Collaborative Lifecycle Management
product team is part of a larger group that develops a set of
over 80 software development tools in the categories of soft-
ware delivery planning, software development, application
deployment, software quality management, and application
monitoring and analytics.

This IBM SWG product team is a large, global organization
with four core product teams working at more than 25 loca-
tions in 10 countries. Before adopting a DevOps approach, the
group worked on a yearly release schedule including an addi-
tional three to six months of lead time to actually determine
what went into that yearly release.

Setting DevOps Goals
The IBM SWG team felt they took too long to respond to shifts
in the market as well as the shifts in demand from customers.
The team decided to shorten the delivery cycle, not only in
the development and test phases but also for the collaboration
and interactions with the business stakeholders and custom-
ers. The goal was set to move from a yearly release schedule
to once every quarter.

In addition to the need to accelerate its development to deliver
new capabilities more frequently, the team had to move more
quickly to support cloud delivery models, mobile development,
mobile testing, and other capabilities to address technology
shifts. The team chose to embrace DevOps principles and
practices to transform the way the group develops software to
deliver value to its customers earlier and more frequently.

Making a modification of this scope required a cultural change
within the organization, so four workgroups were established
that were made up of members of the management team and

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 52
technical leaders. These workgroups examined the software
delivery processes from beginning to end and took responsi-
bility for changing the ways of working. A specific set of mea-
surements and action plans were established to address the
key points in the development process. A continuous delivery
champion team was created, including an evangelist who edu-
cated teams and shared best practices across the organization.

The IBM SWG team started its journey of adopting DevOps by
identifying these goals:

	 ✓	Streamline the process and introduce new methodologies

	 ✓	Leverage tools for consistency, for scalability to other
teams, and for traceability and metrics

	 ✓	Evolve the culture to continuously improving

Learning from the DevOps
Transformation

This section describes the steps taken by the IBM SWG team
to facilitate their DevOps transformation.

Expanding agile practices
Existing agile practices were expanded beyond development
and test to include clients, business stakeholders, and opera-
tions in order to break down silos and improve results. This
broader agile model allows teams to work together to pro-
duce consistent, high-quality software that delivers value for
the business by using a set of processes that is integrated at
every step.

A “one team” approach was taken that combined product
management, design, and development. The development
team included the traditional roles of development managers
and team leads but also brought in operations management
and architects to support an end-to-end life cycle strategy.

Dedicated resources were provided to coach and mentor
teams in agile and continuous delivery across the organiza-
tion. A focus on capabilities versus product components

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Making DevOps Work: IBM’s Story 53
helped to break down traditional silo boundaries and allow
for ship readiness with every sprint and automation. These
feature teams were also empowered by the assignment of ded-
icated development managers. Regular Scrum meetings were
held at all levels of the development organization to identify
and solve blocking issues, track key metrics, utilize live dash-
board data, and communicate critical information.

To improve the timeliness of market changes with develop-
ment priorities, a strategic product committee was formed
and consisted of product management, development direc-
tors, architects, and business owners. Their responsibilities
included the following:

	 ✓	Allocating and ensuring funding for program execution
success

	 ✓	Driving, assisting, and supporting program execution

	 ✓	Establishing long-term vision and direction for the
business

	 ✓	Prioritizing epics and user stories for annual releases
that align with the long-term vision

Leveraging test automation
To eliminate the traditional long back-end test cycles and
improve the quality of releases, an agile continuous testing
approach was adopted using automation and virtualiza-
tion. A rhythm was established with four-week iterations
ending with a demo and four-week milestones ending with
a customer-useable release. Retrospectives after each mile-
stone and understanding technical debt helped eliminate
waste in future iterations. The IBM SWG team motto was
“test early and test often.”

The team adopted the following best practices for test
automation:

	 ✓	Automate repetitive and labor-intensive tests.

	 ✓	Automate in areas where bugs are frequently found.

	 ✓	Run automation on every build; run early and often.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 54
	 ✓	Create automation that’s resistant to user interface (UI)

changes — use a framework that separates the UI from
the tests.

	 ✓	Make it easy to create, deliver, and maintain the automa-
tion establishing strong feature team ownership.

	 ✓	Plan automation development work into your estimates
and ensure developers have time to work on it.

	 ✓	Develop metrics so you can evaluate whether your
automation is useful (you can’t improve what you can’t
measure).

	 ✓	Constantly re-evaluate if your automation is finding bugs
and refactor it if it’s not.

To support test automation, the team deployed IBM Rational
Test Workbench for functional and performance testing,
and to enable more frequent testing, automating the deploy-
ment of builds was critical. By using IBM UrbanCode Deploy,
the team saw test deployment costs reduced by 90 percent
through automated build deployment, which included auto-
mating any necessary application and database server con-
figuration settings.

Building a delivery pipeline
The IBM SWG team decided to build a delivery pipeline that
leveraged “tools-as-a-service” and enabled developers to
commit code, test, and deploy to a production environment
in about 60 minutes compared to one to two days prior.
This process reduced the need for rework and maximized
productivity.

In the team’s deployment, it recognized that a continuous
delivery pipeline needed to embrace the following best
practices:

	 ✓	Shift-left testing and automate as much as possible

	 ✓	Use the same deployment mechanisms everywhere

	 ✓	Strive to maintain a constant state of ship-readiness

	 ✓	Treat infrastructure as code

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Making DevOps Work: IBM’s Story 55
In Figure 6-1, you see the products and the functions provided
as part of the continuous delivery pipeline adopted by the
IBM SWG team.

Figure 6-1: �The continuous delivery pipeline.

	 A key best practice essential in implementing a continuous
delivery pipeline, is to “treat infrastructure as code.” What
this means is that the developer can write scripts to config-
ure the required infrastructure for their application as part of
their application code. In the past, this was typically done by
a system administrator or an operations person, but now the
control and the efficiencies it provides can be accomplished
by the developer directly. Puppet, Chef, and IBM UrbanCode
Deploy with Patterns are examples of the new category of
infrastructure automation tools that make infrastructure as
code a practical reality.

The IBM SWG team now treats infrastructure as code and fol-
lows these best practices:

	 ✓	Treat pattern definitions, script packages, and services
as code.

	 ✓	Version everything.

	 ✓	Automate deployment of topology patterns to the cloud.

	 ✓	Manage versions of patterns across multiple cloud
environments.

	 ✓	Automate the testing of patterns.

	 ✓	Cleanup catalog resources to avoid sprawl.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 56

Experimenting rapidly
The concept of continuous delivery includes not only soft-
ware development activities such as continuous integration
and continuous deployment but also the more fundamental
activity of learning, which is best achieved through frequent
experimentation and measuring the results.

When features and functions are added to an application,
you never know for certain if the customer will receive the
expected or intended benefits. So that’s why it’s important to
IBM to experiment early and often, solicit feedback from cus-
tomers as to what actually works for them, and discard those
features that have little benefit or perhaps are even a hin-
drance. This strategy is depicted in the sketch in Figure 6-2.

Figure 6-2: �A look at hypothesis-driven development.

The IBM SWG team learned a great deal about frequent experi-
mentation and developed the following best practices:

	 ✓	Establish metrics and success/failure criteria.

	 ✓	Figure out what works by running experiments — tiny
tests for a small subset of users to help determine the
usefulness of a feature.

	 ✓	Run multiple experiments continuously.

	 ✓	Make fact-based decisions quickly.

	 ✓	Deliver faster and you can experiment faster.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 6: Making DevOps Work: IBM’s Story 57
	 ✓	Establish a mechanism to enable system-wide experiment-

ing (Google Analytics, IBM Digital Analytics, and so on).

	 ✓	Consider different models of experimenting (classical A/B
testing, multi-armed bandit, and so on).

	 ✓	Follow two paths simultaneously for related projects:
experiment on a cloud-based project and use the data
from the experiments to not only drive the direction of
that project but also related on-premise projects.

Continuously improving
The IBM SWG team wanted to create a culture of continuous
improvement and leverage measures of effectiveness and
efficiency to ensure they were actually improving. The teams
manage their continuous improvement efforts like an agile proj-
ect. They support continuous improvement by tracking matu-
rity goals, pain points, and associated improvements actions
to address the issues. They track continuous improvement
work like other development work to ensure the investment is
widely understood. Maturity goals (for example, capabilities)
may take one or more quarters to actually develop and adopt.
Large pain points may take many months to reduce or elimi-
nate. But in any case, specific improvement actions should all
be sized to deliver within a month.

The IBM SWG team uses retrospectives to institutionalize
continuous improvement. A retrospective is a regular review
of what went well, what didn’t go so well, and what actions
need to be taken to improve. If you aren’t doing retrospec-
tives, it implies a level of perfection in software development
that has yet to be achieved. In a large team, you can have
a hierarchy of retrospectives. For the IBM SWG team, each
component team does a retrospective, and these are used as
input into application-level retrospectives that are then used
as input in a higher solution-level retrospective. Actions
from the retrospectives are documented as pain points with
corresponding improvement actions to take in order to
reduce or alleviate the pain.

And to ensure teams are getting better, the IBM SWG team
established both business metrics and operational metrics to
measure the effectiveness of the DevOps transformation. The
business metrics consist of measured improvements in

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 58
	 ✓	Faster time to delivery

	 ✓	Improved client satisfaction

	 ✓	Reduced maintenance spending while increasing innova-
tion investment

	 ✓	Increased client adoption

Operational metrics impact team’s efficiency over time and
measure the following:

	 ✓	Time to initiate a new project

	 ✓	Build time

	 ✓	Iteration test time

Looking at the DevOps Results
A DevOps approach has helped the IBM SWG team realize
gains in improved customer satisfaction, increased customer
adoption, and a double-digit revenue growth. Shorter time-
frames have energized delivery teams within IBM, resulting
in rapid delivery of upgraded on-premise solutions and new
cloud services such as Bluemix, DevOp Services for Bluemix,
and Collaborative Lifecycle Management as a Managed
Service (CLM aaMS).

As a specific example of the success of a DevOps approach at
IBM, Figure 6-3 shows the measured results achieved by the
IBM SWG Rational Collaborative Lifecycle Management prod-
uct team.

Figure 6-3: �IBM SWG team measured improvements.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

Ten DevOps Myths
In This Chapter
▶	Understanding what DevOps is for

▶	Knowing what DevOps isn’t for

T
he DevOps movement is young and still emerging, espe-
cially among enterprises. Like any new movement or

trend, it has attracted myths and fallacies. Some of these
myths may have originated in companies or projects that
tried and failed to adopt DevOps. What’s true in one situation,
however, may not necessarily be true in others. Here are some
common myths about DevOps — and the facts.

DevOps Is Only for “Born
on the Web” Shops

What is generally referred to as DevOps originated in “born
on the web” companies (companies that originated on the
Internet) such as Etsy, Netflix, and Flickr. Large enterprises
have been using DevOps-aligned principles and practices to
deliver software for decades, however. Furthermore, current
DevOps principles, as described in this book, have a level
of maturity that makes them applicable to large enterprises
that have multiple-platform technologies and distributed
teams.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 60

DevOps Is Operations Learning
How to Code

Operations teams have always written scripts to manage envi-
ronments and repetitive tasks, but with the evolution of infra-
structure as code, operations teams saw a need to manage
these large amounts of code with software engineering prac-
tices such as versioning code, check-in, check-out, branching,
and merging. Today, a new version of an environment is cre-
ated by an operations team member by creating a new ver-
sion of the code that defines it. This doesn’t mean, however,
that operations teams need to learn how to code in Java or
C#. Most infrastructure-as-code technologies use languages
like Ruby, which are relatively easy to pick up, especially for
people who have scripting experience.

DevOps Is Just for Development
and Operations

Although the name suggests a development-plus-operations
origin, DevOps is for the whole team. All stakeholders in the
delivery of software — lines of business, practitioners, execu-
tives, partners, suppliers, and so on — also have a stake in
DevOps.

DevOps Isn’t for ITIL Shops
Some people fear that DevOps capabilities such as continuous
delivery are incompatible with the checks and processes pre-
scribed by the Information Technology Infrastructure Library
(ITIL), a set of documented best practices for IT service man-
agement. In reality, ITIL’s life-cycle model is compatible with
DevOps. Most of the principles defined by ITIL align very well
with DevOps principles. ITIL has, however, received a bad
reputation in some organizations due to being implemented
predominately with slow, waterfall processes that didn’t allow
for rapid changes and improvement. Aligning such practices
between development and operations is the essence of DevOps.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten DevOps Myths 61

DevOps Isn’t for Regulated
Industries

Regulated industries have an overarching need for checks
and balances and for approvals from stakeholders who
ensure compliance and auditability. Adopting DevOps actu-
ally improves compliance, if it’s done properly. Automating
process flows and using tools that have built-in capability to
capture audit trails can help.

	 Organizations in regulated industries will always have manual
checkpoints or gates, but these elements aren’t incompatible
with DevOps.

DevOps Isn’t for Outsourced
Development

Outsourced teams should be viewed as suppliers or capabil-
ity providers in the DevOps delivery pipeline. Organizations
should ensure, however, that the practices and processes of
the supplier teams are compatible with those of their internal
project teams.

	 Using common release planning, work-item management, and
asset repository tools significantly improves communication
and collaboration between lines of business and supplier and
project teams, enabling DevOps practices. Using application
release management tools can greatly improve an organiza-
tion’s ability to define and coordinate the entire release pro-
cess across all participants.

No Cloud Means No DevOps
When you think of DevOps, you often think of cloud because
of its ability to dynamically provision infrastructure resources
for developers and testers to rapidly obtain test environ-
ments without waiting days/weeks for a manual request to
be fulfilled. However, cloud isn’t necessary to adopt DevOps

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DevOps For Dummies, 2nd IBM Limited Edition 62
practices as long as an organization has efficient processes
for obtaining resources for deploying and testing application
changes.

	 Virtualization itself is optional. Continuous delivery to physi-
cal servers is possible if the servers can be configured and
deployed to at the necessary speed.

DevOps Isn’t for Large,
Complex Systems

Complex systems require the discipline and collaboration that
DevOps provides. Such systems typically have multiple soft-
ware and/or hardware components, each of which has its own
delivery cycles and timelines. DevOps facilitates coordination
of these delivery cycles and system-level release planning.

DevOps Is Only about
Communication

Some members of the DevOps community have coined humor-
ous terms such as ChatOps (teams carry out all communica-
tions through communication tools like Internet Relay Chat)
and HugOps (DevOps focuses only on collaboration and com-
munication). These terms stem from the misconception that
communication and collaboration solve all problems.

	 DevOps depends on communication, but better communica-
tion coupled with wasteful processes doesn’t lead to better
deployments.

DevOps Means Continuous
Change Deployment

This misconception comes from organizations that deploy
only web applications. Some of these companies proudly state
on their websites that they deploy to production daily. Daily

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 Chapter 7: Ten DevOps Myths 63
deployment, however, is not only impractical in large orga-
nizations that deploy complex applications, but may also be
impossible due to regulatory or company restrictions. DevOps
isn’t just about deployment, and it’s certainly not just about
deploying continuously to production. Adopting DevOps
allows organizations to release to production when they want
to and not based on a particular date marked on a calendar.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Notes

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2015 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s
ebook EULA.

http://www.wiley.com/go/eula

	Title Page

	Copyright Page

	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book

	Chapter 1: What Is DevOps?
	Understanding the Business Need for DevOps
	Recognizing the Business Value of DevOps
	Enhanced customer experience
	Increased capacity to innovate
	Faster time to value

	Seeing How DevOps Works
	Develop and test against production-like systems
	Deploy with repeatable, reliable processes
	Monitor and validate operational quality
	Amplify feedback loops

	Chapter 2: Looking at DevOps Capabilities
	Paths to DevOps Adoption
	Steer
	Develop/Test
	Collaborative development
	Continuous testing

	Deploy
	Operate
	Continuous monitoring
	Continuous customer feedback and optimization

	Chapter 3: Adopting DevOps
	Knowing Where to Begin
	Identifying business objectives
	Identifying bottlenecks in the delivery pipeline

	People in DevOps
	DevOps culture
	DevOps team

	Process in DevOps
	DevOps as a business process
	Change management process
	DevOps techniques

	Technology in DevOps
	Infrastructure as code
	Delivery pipeline
	Deployment automation and release management

	Chapter 4: Looking at How Cloud Accelerates DevOps
	Using Cloud as an Enabler for DevOps
	Full-Stack Deployments
	Choosing a Cloud Service Model for DevOps
	IaaS
	PaaS

	Understanding What a Hybrid Cloud Is

	Chapter 5: Using DevOps to Solve New Challenges
	Mobile Applications
	ALM Processes
	Scaling Agile
	Multiple-Tier Applications
	DevOps in the Enterprise
	Supply Chains
	The Internet of Things

	Chapter 6: Making DevOps Work: IBM’s Story
	Taking a Look at the Executive’s Role
	Putting Together the Team
	Setting DevOps Goals
	Learning from the DevOps Transformation
	Expanding agile practices
	Leveraging test automation
	Building a delivery pipeline
	Experimenting rapidly
	Continuously improving

	Looking at the DevOps Results

	Chapter 7: Ten DevOps Myths
	DevOps Is Only for “Born on the Web” Shops
	DevOps Is Operations Learning How to Code
	DevOps Is Just for Development and Operations
	DevOps Isn’t for ITIL Shops
	DevOps Isn’t for Regulated Industries
	DevOps Isn’t for Outsourced Development
	No Cloud Means No DevOps
	DevOps Isn’t for Large, Complex Systems
	DevOps Is Only about Communication
	DevOps Means Continuous Change Deployment

	Wiley End User License Agreement

e

DevOps

